# **Examen National 2009**

### Session Normal

Préparé par 2 BAC- PC/SVT

#### Exercice 1 (3 points):

Dans l'espace rapporté à un repère orthonormé direct  $(0, \vec{l}, \vec{j}, \vec{k})$ , on considère les points A(-2, 2, 8),

- B(6, 6, 0), C(2, -1, 0), D(0, 1, -1) et l'ensemble (S) des points M tel que  $\overrightarrow{MA} \overrightarrow{MB} = 0$ 0,75
- 1) Calculer  $\overrightarrow{OC} \wedge \overrightarrow{OD}$ , puis en déduire que : x + 2y + 2z = 0 est une équation du plan (OCD)
- 0,5 2) Vérifier que (S) est la sphère de centre  $\Omega(2,4,4)$  et de rayon R=6
- 0,5 3) a) Calculer la distance de  $\Omega(2, 4, 4)$  au plan (OCD)
- b) En déduire que le plan (OCD) est tangent à la sphère (S) 0,5 0,75 c) Vérifier que :  $\overrightarrow{OA} \overrightarrow{OB} = 0$ . Puis, en déduire que O est le point de tangence de (OCD) et (S)

#### Exercice 2 (3 points):

On considère dans le plan complexe rapporté à un repère orthonormé  $(O, \overrightarrow{u}, \overrightarrow{v})$  les points A, B et C d'affixes respectives : a = 2 - 2i ,  $b = \frac{-\sqrt{3}}{2} + \frac{1}{2}i$  et  $c = 1 - \sqrt{3} + i(\sqrt{3} + 1)$ 

- 1) déterminer une forme trigonométrique de chacun des nombres a et b
- 2) on considère la rotation R de centre O et d'angle  $\frac{5\pi}{6}$
- a) Soient z et z' les affixes respectives d'un point M et de son image M' par R Montrer que : z' = bz
- b) Vérifier que le point C est l'image du point A par R 0,75
  - c) Montrer que :  $arg(c) \equiv arg(a) + arg(b)[2\pi]$ . Puis, déterminer un argument de c

#### Exercice 3 (3 points):

Une urne contient 3 boules blanches, 4 boules noires et 5 boules rouges, indiscernables au toucher. On tire au hasard et simultanément 3 boules de l'urne et on considère les événements suivants :

A: « Obtenir 3 boules de même couleur »

B: « Obtenir 3 boules de couleurs deux à deux différentes »

- 1) Montrer que :  $p(A) = \frac{3}{44}$  et  $p(B) = \frac{3}{11}$
- 2) Notons X la variable aléatoire égale au nombre de couleurs des 3 boules tirées
  - a) Déterminer les valeurs possibles de X
  - b) Déterminer la loi de probabilité de X et calculer E(X) et V(X)





1

1

1

1

0,75

0,5







0.75

0,75

1

1

0.25

0,5

0,25

0.5

0,25

0,5

0.75

0,75

0,75

1

# **Examen National 2009**

### **Session Normal**

#### Exercice 4 (2 points):

- $\forall x \neq -3 \qquad , \qquad \frac{x}{3+x} = 1 \frac{x}{3+x}$ 1) Vérifier que : 0,25
- $\int_{-2}^{-1} \frac{x}{3+x} \, dx = 1 3 \ln(2)$ 0,75 2) Montrer que:
  - 3) En intégrant par parties, montrer que :  $\int_{-2}^{-1} \ln(2x+6) \, dx = -\int_{-2}^{-1} \frac{x}{x^2+x} \, dx$



#### Problème (9 points):

I. On considère la fonction f définie par :  $f(x) = 2 \ln(e^x - 2\sqrt{e^x} + 2)$ 

Et en désigne par  $(C_f)$  la courbe représentative de f dans un repère orthonormé  $(O, \vec{\iota}, \vec{j})$  d'unité graphique 1cm

- 1) Vérifier que :  $\forall x \in \mathbb{R}$  ,  $e^x 2\sqrt{e^x} + 2 = (\sqrt{e^x} + 1)^2 + 1$  et en déduire que f est définie sur  $\mathbb{R} \text{ et que}: \quad \forall x \in \mathbb{R} \quad , \quad 1 - \frac{2}{\sqrt{e^x}} + \frac{2}{e^x} > 0$ 2) Calculer  $\lim_{x \to +\infty} f(x)$  et montrer que :  $\lim_{x \to -\infty} f(x) = \ln(4)$  et interpréter
- graphiquement ce résultat
- 3) a) Montrer que :  $\forall x \in \mathbb{R}$  ,  $f'(x) = \frac{\sqrt{e^x}(\sqrt{e^x}-1)}{(\sqrt{e^x}-1)^2+1}$  et vérifier que : f'(0) = 0
  - b) Étudier le signe de l'expression  $\sqrt{e^x} 1$  sur  $\mathbb{R}$  et en déduire que f est croissante sur  $[0, +\infty[$  et décroissante sur  $]-\infty, 0]$
- $\forall x \in \mathbb{R}$  ,  $f(x) = 2x + 2 \ln \left(1 \frac{2}{\sqrt{\rho^x}} + \frac{2}{\rho^x}\right)$ 4) a) Vérifier que :
  - b) Montrer que la droite d'équation y = 2x est asymptote à  $(C_f)$  en  $+\infty$
- 5) a) Vérifier que :  $\forall x \in \mathbb{R}$  ,  $e^x 3\sqrt{e^x} + 2 = (\sqrt{e^x} 1)(\sqrt{e^x} 2)$
- b) Étudier le signe des expressions :  $\sqrt{e^x} 2$  et  $(\sqrt{e^x} 1)(\sqrt{e^x} 2)$  sur  $\mathbb{R}$ 
  - c) En déduire que :  $\forall x \in [0, \ln(4)]$ ,  $e^x 2\sqrt{e^x} + 2 \le \sqrt{e^x}$
  - d) Montrer que;  $\forall x \in [0, \ln(4)]$ ,  $f(x) \le x$
- 6) Construire la courbe  $(C_f)$  (on donne  $\ln(4) \approx 1.4$  et on admet que  $(C_f)$  admet deux points d'inflexion : l'une d'abscisse inférieur à -1 et l'autre d'abscisse supérieure à 2)
- I. On considère la suite  $(u_n)$  définie par :  $u_0=1$  et  $\forall n\in\mathbb{N}$  ,  $u_{n+1}=f(u_n)$ (on pourra utiliser les résultats précédents dans les questions suivantes)
  - 1) Montrer que:  $\forall n \in \mathbb{N}$  ,  $0 \le u_n \le \ln(4)$
  - 2) Montrer que la suite  $(u_n)$  est décroissante
  - 3) Montrer que la suite  $(u_n)$  est convergente et préciser sa limite



